

The contribution of micromorphology to science

Em. Prof. Dr. G. Stoops

Department of Geology and Soil Science

Universiteit Gent

29th Congress of the Polish Society of Soil Science Wroclav 2015

What is soil micromorphology? (micropedology)

- Micromorphology is the observation and interpretation of
- undisturbed, oriented samples
- with microscopic and ultramicroscopic techniques
- in order to identify their constituents (including voids) and
- to determine their mutual spatial relations in space and time, including the anisotropy.
- allowing to deduce genetic and chronological relationships

- garnet, glass, gold, iron, cupper, gold...
- % Si, Al, Fe, Au, Cu,.....

• → understanding

Difference with other soil disciplines

 Soil chemistry, mineralogy, plant nutrition, physics, etc. deal with homogenised bulk samples; heterogeneity and anistropy are lost. E.g. total content of calcium carbonate

>-<

- Micromorphology allows to observe and measure in undisturbed samples the microheterogeneity and anistropy. E.g. calcite: lithogenic or pedogenic, as coatings or nodules, decalcification around roots.
- Voids are considered as components

Scale and methods

- Macromorphology: hand lens, natural samples (cm – mm)
- Mesomorphology: stereomicroscope, natural samples (mm)
- Micromorphology: petrographic microscope, thin sections (mm - μm)
- Submicroscopy: electronic microscopes, thin sections or fractures (μm)

Study of thin sections

- Petrographic microscope (plane polarised light, crossed polarisers, circular polarised light, oblique incident light, blue light- and UV light fluorescence, cathodoluminescence, etc.)
 Staining and dissolution tests
- Analytical tools: Microprobe, micro-XRD, micro-XRF, micro-FTIR, LAMMA, etc.

History

Kubiëna 1938:

« Micropedology »
first handbook
morphoanalytical

Kubiëna 1948
 morphogenetic (linked to soil classification) e.g.

 Braunerde, Rotlehm

Later developments Morphoanalytical systems

- Brewer 1964
- Bullock et al. 1985 (ISSS-supported system)
- Stoops 2003: based on Bullock et al. 1985
- Delvigne 1998 (weathering)

Evolution of publications worldwide Total number of publications

Polish publications

Languages used

Topics

Application in different fields

- Soil science
 - Genesis
 - Classification
 - Mineralogy (including weathering and neoformations)
 - Agriculture (soil physics, soil chemistry)
- Palaeopedology
- Quaternary geology
 - Landscape formation (sediments, erosion)
 - Sediments (especially glacial)
- Archaeology
 - Fabric
 - Materials
- Material studies

Evolution of application fields

Applications others than genesis and classification

Micromorphology and soil genesis Examples

- The gypsic horizon is not only a precipitation
- Laterites are complex, heterogeneous bodies

- Almost all soils are polygenetic (e.g. different types of clay coatings in Luvisols)
- Processes show rhythmicity
- Pedogenesis is not a continuous process in one direction

Formation of gypsic horizon

7

• Laterite genesis is complex

Complex laterite genesis

Chronology of events and anisotropy

Weathering of andesite boulder

Applications in soil classification

- Soil classification of Kubiëna (genetic)
- Soil Taxonomy, FAO, WRB: non-genetic
 - micromorphology is not a criterion (except formerly for argillic diagnostic horizon, partly for cambic),
 - but micromorphological studies sometimes used to support new definition proposals

Applications in soil mineralogy

- Reconstructing the parent material including moldic voids)
- Weathering: relation between lithogenic and pedogenic minerals (e.g. garnet → goethite)
- Soil material is heterogeneous: where did neoformation take place? Examples of calcite, celestite and transformation gypsum → calcite)
- Mineral equilibria (in saprolite, in bog ore): paragenes?
- What is the chronological relation?
- Check laboratory results on bulk samples

Not all feldspars are equal!

Garnets and their alteromorphs

Calcite neoformation (querra)

Gypsum, celestite (SrSO₄) and palygorskite

Gypsum → calcite

Global thermodynamics >< microreality

A paragenesis in bog ore?

Check interpretation of laboratory results

Applications in agriculture

- Limited
- Soil physics: permeability (quantification), qoil degradation (e.g. compaction), soil crusts (sedimentary, structural, biological),
- Soil biology: influence of mesofauna
- Plant growth: interface plant soil
- Soil chemistry: dissolution fertilisers; location of nutritive elements (e.g. in coatings >< peds))

Soil science and pedology

- The soil that supports us
- Physical conditions: permeability, aeration, water holding capacity...
- Chemical conditions:
 P,N,K, trace elements...
- Can this approach be sustainable without knowledge of genesis?

- Soil as a natural body
- Genesis: how was the material formed, how was the soil formed, how will it evoluate?

Applications in soil physics

- Studies on crust formation
- Mapping conducting voids
- Determing types and quantities of voids (micromorphometry)

Vesicular crust formation

Fig. 5.
Porosity (in %) versus number of wetting cycles.

Fig. 6. Number of pores versus number of wetting cycles.

Palaeopedology

- Based on knowledge of present soil genesis
- But additionally:
- Diagenetic features
- Different environmental conditions in the geological past

Glauconite formation at top of buried palaeosoil

Applications in Quaternary geology

- Palaeosoils as markers for evironmental changes
- Geomorphology, erosion (including experimental work); colluvial deposits
- Sediments, especially glacial

Quaternary geology

 Lenticular microstructure pointing to freezethawing conditions (note anisotropy)

Change of environment

Buried crust in Pampa loess

Archaeology

- Recognising materials (e.g. plant ash, combustion features, burned surfaces, bones, ceramics, excrements of herbivores, carnivores, omnivores, etc.
- Recognising fabrics: dark earths, trampling, forest clearance, middens, living floors, etc.

Examples from Tell ed Deir (Iraq)

Stucco

Material studies

- Studies on shearing in soil mechanics
- Application to reservoir rocks in petroleum research (J. Bell)

Quantification

- Types
- of solid constituents (e.g. by point counting): clay coatings, calcite new-formations, shear orientations
- of microstructures (e.g. by image analysis)

Problems:

- Features should be mutually exclusive
- Statistically representativity needs large number of samples and thin sections
- Magnification and setting of thresholds not standardised → results cannot be compared

Mutually exclusive?

Use of micromorphology

- Soil genesis
- Soil classification
- Soil mineralogy
- Soil physics
- Soil chemistry, fertility
- Quaternary geology
- Archaeology
- Engineering etc.

What is happening?

- Shift from pedogenesis to Quaternary geology, and especially to archaeology
 - Parallel to decreased interest for genesis in soil science
- Important micromorphological centres are closing, other are emerging
- Need

What to do?

- Need for good training courses, including basic training in mineralogy and petrography for non-geologists
- Need for more experimental work (already started in archaeology, in the past also in erosion studies)
- Need for more interdisciplinary work
- Need for more interaction with soil scientists working in agriculture

CONTENT

- Introduction
 - Definition and history
 - Mutual relations
 - Quantification ?
- Contributions to
 - Soil science
 - Quaternary geology, including Palaeopedology
 - Archaeology
- Conclusions

Weathering of chalk to clay with flint

Weathering of chalk to clay with flint

